Remote Sensing Applications

P. S. Roy
R. S. Dwivedi
D. Vijayan

National Remote Sensing Centre
Remote Sensing Applications

Compiled & Edited by
P.S. Roy
R.S. Dwivedi
D. Vijayan

RS & GIS Applications Area
NRSC - ISRO
Earth Observation (EO) Programme focus in India has been to support operational remote sensing for sustainable natural resources management, address national needs and provide space based information support for disaster management and grassroots planning. NRSC (ISRO) has carried out many application projects for various government agencies under the aegis of National Natural Resources Management System (NNRMS) to utilize the satellite data for various natural resources applications and disaster related information support. NRSC is mandated to build the capacity in country for usage of Remote Sensing and Geo-information for its utilization and institutionalization is arranged to support capacity building initiative by Remote Sensing and GIS Applications Area.

First edition January, 2010
Second edition April, 2010

Copyright © 2010 by NRSC / ISRO, Hyderabad, India. All rights reserved.

Remote Sensing Applications

Compiled and Edited by
Dr. P. S. Roy, Deputy Director,
Remote Sensing & GIS Applications Area, NRSC

Dr. R.S. Dwivedi and D.Vijayan
RS & GIS Applications Area, NRSC

Published by
National Remote Sensing Centre
Indian Space Research Organisation
Dept. of Space, Govt. of India,
Balanagar, Hyderabad – 500 625

Acknowledgements

The Editors would like to acknowledge all the authors who contributed various chapters in this book. Special thanks are to Director, NRSC for giving the message which encouraged us to bringout this volume. Thanks also to Dr. V. Hari Prasad, NRSC for extending his support in bringing out this book.
Remote Sensing Applications

<table>
<thead>
<tr>
<th>Chapter #</th>
<th>Title/Authors</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agriculture</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sesha Sai MVR, Ramana KV & Hebbar R</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Land use and Land cover Analysis</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Sudhakar S & Kameshwara Rao SVC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Forest and Vegetation</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Murthy MSR & Jha CS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Soils and Land Degradation</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Ravishankar T & Sreenivas K</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Urban and Regional Planning</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Venugopala Rao K, Ramesh B, Bhavani SVL & Kamini J</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Water Resources Management</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Rao VV & Raju PV</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Geosciences</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Vinod Kumar K & Arindam Guha</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Groundwater</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Subramanian SK & Seshadri K</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oceans</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Ali MM, Rao KH, Rao MV & Sridhar PN</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Atmosphere</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Badrinath KVS</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cyclones</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Ali MM</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Flood Disaster Management</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Bhanumurthy V, Manjusree P & Srinivasa Rao G</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Agricultural Drought Monitoring and Assessment</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Murthy CS & Sesha Sai MVR</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Landslides</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Vinod Kumar K & Tapas RM</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Earthquake and Active Faults</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Vinod Kumar K</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Forest Fire Monitoring</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Biswaip Gharai, Badrinath KVS & Murthy MSR</td>
<td></td>
</tr>
</tbody>
</table>
Contents

1. Agriculture 1

1.1. Introduction

1.2. Remote Sensing in Optical and Reflective Infra Red (IR) region
 1.2.1. Reflectance Characteristics of Green Plants

1.3. Crop Inventory
 1.3.1. Acreage Estimation
 1.3.1.1. Major Crops
 1.3.1.2. Multiple Crop and Small Land Holding Situations
 1.3.1.3. Commercially important crops
 1.3.2. Horticultural Crops

1.4. Cropping System Analysis

1.5. Production Estimation

1.6. Crop Monitoring and Condition Assessment

1.7. Significance of NDVI in Agricultural Drought Assessment

1.8. Thermal Remote Sensing
 1.8.1. Parameter retrieval
 1.8.1.1. Surface Temperature
 1.8.1.2. Methods for LST Retrieval
 1.8.1.3. Precipitation
 1.8.1.4. Solar Radiation
 1.8.2. Agro Meteorological Applications

1.9. Hyperspectral Sensors and Applications in Agriculture
 1.9.1. Introduction
 1.9.2. Parameter retrieval
 1.9.3. Stress Detection
 1.9.4. Varietal discrimination
 1.9.5. Disease identification

1.10. Microwave Remote Sensing
 1.10.1. National Kharif Rice Acreage Estimation

1.11. Customized software for crop acreage estimation

1.12. Conclusions

2. Land Use and Land Cover Analysis 21

2.1. Introduction

2.2. LULC Mapping
 2.2.1. Conventional Approach
 2.2.2. Remote Sensing based Approach
 2.2.3. LULC Classification System

2.3. Historical perspective of LULC mapping projects using remote sensing in India
 2.3.1. Nationwide LULC Analysis for Agro-Climatic Zone Planning
 2.3.2. National Wastelands Inventory Project (NWIP)
 2.3.3. National Natural Resource Census

2.4. Methodology of Land Use / Land Cover Analysis
 2.4.1. Pre-processing
 2.4.2. Classification
 2.4.2.1. Digital Classification
 2.4.2.2. Manual Classification
 2.4.2.3. Hybrid Approach
 2.4.3. Other methods of classification in vogue
 2.4.3.1. Normalized Difference Vegetation Index
 2.4.3.2. Spectral Mixture Analysis

2.5. Ground Data Collection
2.6. Accuracy Assessment
2.7. Land Use Land Cover Mapping-Issues
2.8. Research needs and Opportunities
 2.8.1. Pre-processing
 2.8.2. Classification
2.9. Land Use Land Cover Change
 2.9.1. Land Use & Land Cover Change Detection with Remote Sensing data
2.10. Land Use Modeling
 2.10.1. Approaches to Modeling Land Use/ Land Cover Changes
 2.10.2. Hybrid Models
 2.10.3. Agent-Based Models
 2.10.3.1. Multi-Agent Systems for Land-Use/Cover Change
 2.10.4. Current Applications of MAS/LUCC Modeling
2.11. Land Use/Cover Change, Climate and Environment
 2.11.1. Effect of land use/land cover on local climate
 2.11.2. Effect of land use/land cover on global climate
 2.11.3. Impact of climate change on land use/land cover
2.12. Conclusions

3. Forest and Vegetation

3.1. Introduction
3.2. Global and National Issues, Scenarios and Developments
 3.2.1. Global Scenario
 3.2.2. National Scenario
3.3. Conventional / Ground / Recent Methods – Remote Sensing
 3.3.1. Satellite Remote Sensing Applications in Forestry
 3.3.2. Multispectral basis of Remote Sensing and Vegetation
 3.3.2.1. Red Edge
 3.3.3. Retrieval of Forest Parameters and Integrated Analysis
 3.3.3.1. Greenness
 3.3.3.2. Forest Type Mapping
 3.3.3.2.1. Digital method
 3.3.3.2.2. Visual method
 3.3.3.3. Preparation of Forest Crown Density Maps
 3.3.3.4. Forest Quantification – Inventory Approaches
 3.3.3.5. Forest Quantification – Biomass, LAI from NDVI
3.4. Review of Literature
 3.4.1. Coarse-resolution remote sensing
 3.4.2. High-resolution remote sensing
 3.4.3. Very-high-resolution remote sensing
 3.4.4. Temporal monitoring
 3.4.5. Hyperspectral remote Sensing
 3.4.6. Microwave and LIDAR sensing of forests
 3.4.7. Geomatics and Forestry
3.5. Major Application Projects
 3.5.1. Different IRS satellite sensors and use for Bioresources assessment
 3.5.2. Forest Cover Assessment
 3.5.3. Vegetation type mapping as potential base of bioresource
 3.5.4. Landscape level biodiversity assessment- Input for Bioresources assessment
 3.5.5. Grassland Resources Assessment
 3.5.6. Species level mapping as potential information as Bioresource
 3.5.7. Biomass assessment as fodder, fuel and carbon stock
 3.5.8. Community Forest management – Sustainable use of Bioresources
 3.5.9. Commercial Timber Resource Assessment
 3.5.10. Protected Areas & Conservation
3.5.11. Web-Enabled Information System
 3.5.11.1. Biodiversity Information System
 3.5.11.2. Indian Bioresources Information Network (IBIN)
 3.5.11.3. Global Change Studies - Need for LU LC databases
 3.5.11.4. Forest Fire Management

3.6. Gap Areas

3.7. Summary and conclusions

4. Soils and Land Degradation

4.1. Introduction

4.2. Spectral Reflectance of Soils

4.3. Recent Developments in Soil Spectroscopy

4.4. Soil Mapping
 4.4.1. Status
 4.4.2. Survey Methods
 4.4.3. Geo-Pedological Approach to Soil Mapping
 4.4.4. Remote Sensing and Soil Mapping
 4.4.5. Visual Interpretation for Soil Mapping
 4.4.6. Digital Techniques for Mapping Soils

4.5. Land Degradation
 4.5.1. Status
 4.5.2. Land degradation processes
 4.5.3. Remote Sensing, GIS and Land Degradation
 4.5.4. Mapping land degradation
 4.5.5. Monitoring of land degradation

4.6. Soil Moisture Studies

4.7. Remote Sensing of Soil Fertility

4.8. Application of GIS techniques in Soil Resources study
 4.8.1. Crop Suitability Studies
 4.8.2. Land Irrigability Assessment
 4.8.3. Land Productivity Assessment
 4.8.4. Soil Erosion Modelling
 4.8.5. Prioritization of Watershed

4.9. Conclusions

5. Urban and Regional Planning

5.1. Introduction

5.2. Urbanization Scenario and Issues: Global and National

5.3. Planning Approach

5.4. Remote Sensing & GIS Technology use in Urban and Regional Planning Information

5.5. Retrospective
 5.5.1. Prospective
 5.5.2. Role of Remote Sensing

5.6. Reviews of Literature

5.7. Major Application Projects
 5.7.1. Regional Planning
 5.7.2. Master / Development Plan
 5.7.3. Infrastructure Facility Mapping
 5.7.4. Urban Information System
 5.7.5. Archaeological Studies

5.8. Scientific Methods
 5.8.1. Feature Extraction and Classification
 5.8.2. Change Detection
 5.8.3. Fusion and Photogrammetry
 5.8.4. Environmental and Temporal Analysis
 5.8.5. Historical Site studies
5.8.6. Urban Modeling
5.10. Conclusion

6. Water Resources Management

6.1. Introduction
6.1.1. Water Resources of India
6.1.2. Water Requirements of India
6.1.3. Gaps and Issues related to Indian water resources

6.2.1. Major Application Projects

6.3. Water Resources Assessment
6.3.1. Snow & Glacier Studies
6.3.2. Surface Water Mapping & Monitoring
6.3.3. Runoff and Hydrologic Modeling
6.3.4. Water Balance Studies

6.4. Water Resources Management
6.4.1. Irrigation Water Management
6.4.1.1. Inventory of Irrigated Agriculture
6.4.1.2. Performance Assessment
6.4.1.3. In-Season Inputs for Irrigation Water Distribution
6.4.1.4. Salinity and Waterlogged Area Mapping & Monitoring
6.4.1.5. Monitoring New Irrigation Potential Creation
6.4.1.6. Satellite data for Evapotranspiration studies
6.4.2. Reservoir Management
6.4.2.1. Reservoir Sedimentation
6.4.2.2. Catchment Area Treatment

6.5. Watershed Management
6.5.1. Water Harvesting
6.5.2. Sustainable Action Plans
6.5.2.1. Integrated Mission for Sustainable Development (IMSD)
6.5.2.2. National Agricultural Technology Project (NATP)
6.5.2.3. Other Efforts
6.5.3. Soil Erosion

6.6. Water Resources Development
6.6.1. Interlinking of Rivers
6.6.2. Ground Water Prospecting

6.7. Flood/Cyclone Disaster Support
6.7.1. Flood Disaster Monitoring and Management
6.7.2. Flood Forecasting
6.7.3. River Engineering
6.7.4. Urban Flood Management

6.8. Environmental Impact Support
6.8.1. Hydro-Power Development
6.8.2. Water Quality

6.9. Future Trends / Prospects
6.9.1. Water Resources Information system

7. Geosciences

7.1. Geological Mapping
7.1.1. Introduction
7.1.2. Image Interpretation
7.1.2.1. Image Elements
7.1.2.2. Terrain Elements
7.1.2.3. Collateral Data
7.1.3. Spectral Signature of Rocks
7.1.4. Lithological Mapping using Remote Sensing
 7.1.4.1. Sedimentary Rocks
 7.1.4.2. Igneous Rocks
 7.1.4.3. Metamorphic Rocks
 7.1.4.4. Steps in interpreting lithology from satellite image
7.1.5. Criteria for Structural Mapping
 7.1.5.1. Attitude of Beds
 7.1.5.2. Folds
 7.1.5.3. Linear Features
 7.1.5.4. Unconformities
 7.1.5.5. Methodology for extracting structural information
7.1.6. Criteria for Geomorphological Mapping
 7.1.6.1. Identification of different types of Landform/Geomorphic Units
 7.1.6.2. Methodology for extracting Geomorphological information
7.1.7. Thermal and Microwave data in Geological Mapping
 7.1.7.1. Thermal Remote sensing data in Geological Mapping
 7.1.7.2. Microwave remote sensing data in Geological Mapping
7.1.8. Review of Literature
7.1.9. Gap Areas
7.1.10. Case Study
 7.1.10.1. Geological Description
 7.1.10.2. Methodology
7.1.11. Summary

7.2. Mineral Exploration
 7.2.1. Introduction
 7.2.2. Global, National Issues, Scenario Development
 7.2.3. Conventional and Scientific Methods in Practice
 7.2.3.1. Methods/approaches for utilization of Remote Sensing data for Mineral Exploration
 7.2.3.2. Methods for Oil field Detection through Remote Sensing
 7.2.4. Literature Review
 7.2.5. Gap Areas
 7.2.6. Case Study
 7.2.6.1. Introduction
 7.2.6.2. Methodology

7.3. Geoenvironmental Studies
 7.3.1. Introduction
 7.3.2. National and Global Scenario
 7.3.3. Literature Survey
 7.3.4. Case Study
 7.3.4.1. Introduction
 7.3.4.2. Remote Sensing Data Analysis: Principles of thermal remote sensing
 7.3.4.3. Methodology
 7.3.4.4. Results

7.4. Geoengineering Studies
 7.4.1. Introduction
8. Groundwater

8.1. Introduction
8.2. Background
8.2.1. Factors Controlling Groundwater Regime
8.3. Role of Space Technology in Groundwater Studies
8.4. Groundwater Prospects Mapping
8.4.1. Lithology
8.4.2. Geological Structure
8.4.3. Geomorphology
8.4.4. Hydrological Mapping
8.4.5. Groundwater Prospects
8.4.6. Groundwater Quality Mapping
8.5. Groundwater Recharge Estimation
8.5.1. Water Level Fluctuation Method
8.5.2. Rainfall Infiltration Method
8.5.3. Groundwater Draft Estimation
8.5.4. Groundwater Balance and Stage of Development
8.5.5. Identification and Mapping of over-exploited Areas
8.6. Systematic Planning and Development
8.7. Conclusions and Future Perspective

9. Oceans

9.1. Introduction
9.1.1. The need for Ocean Studies
9.1.2. Broad disciplines of Ocean Sciences
9.2. Physical Oceanography
9.2.1. Forces acting on Oceans
9.2.2. Scale Analysis
9.2.3. Physical Oceanographic Parameters
9.2.3.1. Ocean waves
9.2.3.2. Ocean currents
9.2.3.3. Sea surface temperature
9.2.3.4. Sea surface height
9.2.3.5. Radiation
9.2.4. Applications of Physical Oceanographic Parameters and Processes
9.2.4.1. Influence of oceans on weather and climate
9.2.4.2. Optimum ship route planning
9.2.4.3. Strategic Applications
9.3. Biological Oceanography
9.3.1. Ocean Colour
9.3.2. Applications of Ocean Colour
9.3.2.1. Coastal Upwelling
9.3.2.2. Coastal currents using sequential ocean colour images
9.3.2.3. Seasonal Phytoplankton Blooms
9.3.2.4. Study of potential fishing zones
9.3.2.5. Impact of tropical cyclones on ocean colour
9.3.2.6. Studies of small scale eddies/gyres
9.3.2.7. River Plumes
9.4. Geological Oceanography
9.4.1. Geological Processes
9.4.1.1. Long-term changes
9.4.1.2. Short-term changes
9.4.1.3. Coastal changes due to shoreline development
9.4.1.4. Physical forcing and sedimentation process
9.4.2. Coastal Ecosystem functionality and vulnerability
9.4.3. Role of Spatial data for Coastal Ocean Studies
 9.4.3.1. Ecosystem Assessment
 9.4.3.2. Coral Reefs Ecosystem
 9.4.3.3. Estuarine Mangroves Ecosystem
 9.4.3.4. Coastal Wetlands Ecosystem
 9.4.3.5. Coastal Zone Management and Solutions
9.5. Remote Sensing Observations
 9.5.1. Altimeter
 9.5.1.1. Errors in Altimeter Measurements
 9.5.1.2. Applications
 9.5.2. Scatterometer
 9.5.2.1. Principles of Scatterometers
 9.5.2.2. Applications of Scatterometers
 9.5.3. Radiometers
 9.5.3.1. Thermal Radiometers
 9.5.3.2. Microwave Radiometers
 9.5.3.3. MSMR- Multi Frequency Radiometers
 9.5.4. Synthetic Aperture Radar

10. Atmosphere
 10.1. Introduction
 10.1.1. Greenhouse Effect and Global Warming
 10.1.2. Atmospheric Composition
 10.1.3. Atmospheric Structure
 10.2. Platforms for measuring atmospheric constituents
 10.3. Remote Sensing of Atmospheric Parameters
 10.3.1. Role of aerosols and clouds
 10.3.2. Physical principles of aerosol retrieval from space
 10.3.3. Physical basis of TOMS aerosol retrieval approach
 10.4. Present and Future Missions
 10.4.1. INSAT series
 10.5. MEGHA-TROPIQUES

11. Cyclones
 11.1. Introduction
 11.2. Life Cycle of Tropical Cyclones
 11.3. Classification of Cyclonic Disturbances
 11.4. Movement of Cyclones
 11.5. Cyclone Intensity
 11.5.1. Upper Tropospheric Anticyclones
 11.5.2. Tropical Upper Tropospheric Trough
 11.5.3. Other Factors Affecting Intensity
 11.6. Cyclone Track Prediction
 11.7. Cyclone Intensity Prediction
 11.8. Satellite Technologies
 11.9. Operational Scenario
 11.10. The Future
12. Flood Disaster Management

12.1. Introduction
 12.1.1. Floods in India
 12.1.2. Flood Management
 12.1.3. Role of Space Technology
 12.1.4. Initiatives of Department of Space

12.2. Approach
 12.2.1. Flood Watch
 12.2.1.1. Flood News
 12.2.1.2. Meteorological Satellite Data
 12.2.1.3. Rainfall Data
 12.2.1.4. Water Level Data
 12.2.2. Satellite Data Acquisition
 12.2.3. Satellite Data Analysis
 12.2.3.1. Optical Data
 12.2.3.2. Microwave Data
 12.2.3.3. Methodology
 12.2.4. Flood Inundation Products
 12.2.4.1. Flood Maps
 12.2.4.2. Flood Damage Assessment

12.3. Case Study-2006 Floods in Bihar, India

12.4. River Configuration and Bank Erosion Aspects in Flood Control Planning
 12.4.1. Potential use of Satellite Data
 12.4.2. Case Study - Brahmaputra River Bank Erosion, Assam

12.5. Future Scope
 12.5.1. Gap Areas
 12.5.1.1. Optical
 12.5.1.2. Microwave
 12.5.2. Flood Modelling using LIDAR data
 12.5.2.1. River Forecasting
 12.5.2.2. Urban Flood Modelling
 12.5.3. Decision Support System
 12.5.3.1. Flood Management Information System (FMIS)

13. Agricultural Drought Monitoring and Assessment

13.1. Introduction
 13.1.1. Drought impacts – the vicious circle
 13.1.2. Drought scenario in India
 13.1.3. Droughts – the global scenario

13.2. Monsoon pattern in India

13.3. Agricultural Drought Monitoring & Assessment
 13.3.1. Meteorological indicators
 13.3.1.1. Limitations of using rainfall as agricultural drought indicator
 13.3.2. Water Balance Approach
 13.3.3. Agricultural observations

13.4. Drought information needs
 13.4.1. Gap Areas

13.5. Application of Geospatial Information Technology

13.6. Space Technology for Agricultural Drought Monitoring
 13.6.1. Drought Indices from satellite data
 13.6.1.1. Normalised Difference Vegetation Index (NDVI)
 13.6.1.2. Normalised Difference Water Index (NDWI)
 13.6.1.3. Drought indices derived from NDVI and Temperature
13.6.1.4. Process based indicators
13.7. Rainfall and Soil Moisture Estimation from Satellites
13.8. National Agricultural Drought Assessment and Monitoring System (NADAMS)
 13.8.1. Integration of satellite derived indicators and ground data
 13.8.2. Drought reports and user feedback
13.9. Drought declaration by different states
13.10. Drought Management
 13.10.1. Drought Preparedness
 13.10.2. Prediction of Drought
13.11. Drought proneness/drought vulnerability
 13.11.1. Drought vulnerability based on causative factors
 13.11.2. Drought vulnerability based on response factors
 13.12.1. Future Satellite Systems for Drought Analysis
 13.12.2. Unified index
 13.12.3. Enhanced exploitation of space technology
 13.12.4. Data base
 13.12.5. Early warning systems
 13.12.6. Improved deliverables
 13.12.7. Delivery mechanism
 13.12.8. Integration between Science and Policy
 13.12.9. Institutional frame work
13.13. Conclusions

14. Landslides 331
 14.1. Introduction
 14.1.1. Cause of Landslide
 14.1.2. Role of remote sensing in Landslide Inventory
 14.2. Global and National Scenario
 14.3. Methods of Landslide Hazard Zonation (LHZ)
 14.3.1. Conventional method
 14.3.2. Statistical method
 14.4. Gap Areas
 14.5. Major Application Projects
 14.5.1. LHZ mapping in Uttarakhand and Himachal Pradesh
 14.5.2. Mumbai-Goa (NH-17) Route
 14.5.3. Varunawat Landslide
 14.5.4. DSC Activity
 14.6. Methods to solve the problem
 14.7. Monitoring of Landslide
 14.7.1. Remote sensing
 14.7.2. Ground instruments
 14.8. Cost benefit analysis
 14.9. Summary

15. Earthquake and Active Faults 339
 15.1. Introduction
 15.2. Global, National Issues and Scenario Development
 15.3. Conventional and Scientific Methods in Practice
 15.4. Literature Review
 15.5. GAP Areas
 15.6. Case Study
 15.6.1. Study Area
 15.6.2. Data Used
15.6.3. Analysis
 15.6.3.1. Geological Assessment
 15.6.3.2. Tectonics Framework of the Kashmir Region
 15.6.4. Damage Assessment
15.7. Future
15.8. Summary

16. Forest Fire Monitoring
 16.1. Introduction
 16.1.1. Causes of fire
 16.1.2. Classification of forest fire
 16.1.3. Global and National Issues, Scenario and Developments
16.2. Review of Literatures
 16.2.1. Fire Detection
 16.2.2. Fire burnt Area Assessment
 16.2.3. Fire Risk Assessment
 16.2.4. Fire Ecology
 16.2.5. Agricultural burning
 16.2.6. Biomass burning
 16.2.7. Forest Fire Management System
16.3. Forest Fire Study under DSC, DMSP at NRSC, India
 16.3.1. Indian Forest Fire Management System (INFFRAS)
 16.3.1.1. Active fire detection using MODIS Terra/Aqua data
 16.3.1.1.1. Introduction
 16.3.1.1.2. Methodology for detection of active fire locations using-
 MODIS Terra/Aqua data
 16.3.1.1.3. Cloud and water masking
 16.3.1.1.4. Identification of potential fire pixels
 16.3.1.1.5. Absolute threshold test
 16.3.1.1.6. Background characterization
 16.3.1.1.7. Contextual tests
 16.3.1.1.8. Creation of Forest Mask
 16.3.1.1.9. Tentative fire detection
 16.3.1.1.10. Validation / Accuracy Assessment
 16.3.1.2. Active fire detection using Defense Meteorological Active fire detection
 using DMSP-OLS data
 16.3.1.2.1. Introduction
 16.3.1.2.2. Methodology and description of Algorithms
 16.3.1.2.3. Factors influencing DMSP fire detection
 16.3.1.3. Burnt Area Assessment
 16.3.1.3.1. Introduction
 16.3.1.3.2. Burnt area assessment for Rajiv Gandhi National Park
 16.3.1.3.3. Burnt area assessment in Bhandavgarh National Park
 16.3.1.4. Fire progression Monitoring
 16.3.1.5. Fire Risk Assessment-Case Study in India
 16.3.1.6. Recovery / Mitigation Planning
16.4. Conclusion and Future Aspect
The recent times have seen galloping advances in space science, technology and applications, primarily due to ever improving advances in devices, computing, data handling and networking capabilities. Particularly the Earth Observation (EO) community has seen the advent of improved capabilities in imaging and non-imaging sensors as well as various advances in enabling techniques such as Geographical information system, Image Processing as well as the Global Positioning System, aided well by the information communication technology advances, resulting in vast outreach of EO potentials, touching almost every facet of human life.

India has conscientiously pursued with the EO applications for societal developments through multifarious activities in agriculture, land and water resources, environment and energy domains. With the continuous explosion of developments with the availability of newer sensors with enhanced capabilities and emerging demands with increasing expectations, the avenues for exploiting newer applications have broadened further. Obviously, these advances need corresponding concurrent efforts in the capacity building activities. It is well appreciated that capacity building itself is more than just training & education, and that it is also encompasses human resources development, organisational strengthening and institutional building to ensure a sustainable follow-up. At the same time, it is realised that in the chain of capacity building, bringing up talent and skill at every level is very important. For that to happen, it is of paramount importance that organised courses with appropriate contents are periodically organised, imparting both the theoretical basics for understanding the technology and techniques; and practical hands-on exposure to EO applications to ensure adoption and assimilation by the user community.

Towards the above, National Remote Sensing Centre has been conducting short duration and appraisal courses on Remote Sensing and allied technologies, meeting the needs of around 500 trainees at various levels every year. This comprehensive publication, principally addressing the Remote Sensing Applications segment has been expanded with the above intention, both in terms of depth of treatment as well as coverage of topics, supported by appropriate case studies. This effort, I am sure, will promote not only for a better understanding of the operational Remote Sensing applications, but also will trigger sufficient interests and imagination for taking up research in this domain.

I wish that this publication will reach all those in need, thus serving the larger purpose for which it is intended for.
Space technology has immense influence in the decision making process in almost all social spheres. It encompasses information generation on natural resource viz., land use, agriculture, climate, urban systems for better management of resources and in protecting ourselves from the impact of natural calamities like flood, cyclone, drought, forest fire and landslide etc. by being informed about the probability of occurrence and preparing contingency to face it. Natural resource management is dependent on the availability and quality of the geo-information on every sphere of human activity and its interaction with the environment. The recent advances in information technology and earth observation have facilitated unprecedented growth and need of spatial information in various facets of our life.

The information and its dissemination have created awareness among people and an informed society can be considered a precursor to development. In this direction, National Remote Sensing Centre (NRSC) is carrying out various nationwide application projects so that the end use of remote sensing and Geo-information technology reaches common man at the grass root level. Capacity building through training creates skilled professionals in specific area of applications to bridge the demand and requirement of trained manpower in India.

To share the expertise gained in Remote Sensing and GIS applications of natural resources and their management through capacity building, a comprehensive study material in the form of this publication has been prepared. This publication consist of 16 chapters convey remote sensing & GIS applications in land, water and atmosphere besides natural disasters.

This publication has been made possible due to the efforts of so many scientists of NRSC who are experts in their own field. This publication is lucid with appropriate well supported illustrations, diagrams, tables, figures, references and case studies for ease of understanding even for a non-expert. I take this opportunity to thanks all the authors for their contributions. I feel that providing access and sharing of resources will fasten the growth and use of geo-informatics technology for societal benefits. I hope that the readers will derive maximum benefit from this publication and use it for further development of Remote Sensing Applications in the country.
Realizing the importance of space technology in national developmental programmes, the Department of Space was established in 1972. The utility of aerospace data for management of natural resources was then demonstrated through R&D efforts and pilot studies with the users. The need for upscaling such studies at operational level was subsequently visualized which had led to the establishment of National Remote Sensing Agency (NRSA) in 1974 at Hyderabad under Department of Science and Technology. In 1980, NRSA was brought into the folds of Department of Space, Govt. of India as an autonomous body. In September, 2009, NRSA had attained the status as government organization, rechristened as National Remote Sensing Centre (NRSC), and had become part of Indian Space Research Organization (ISRO), Department of Space.

Commensurating with its mandate, NRSC (erstwhile NRSA) has been striving for operationalization of space technology in India for management of natural resources, environment and natural disasters by way of acquisition, processing, dissemination and value addition of aerospace data. In order to realize its goal, NRSC operates through its five wings, namely Satellite Data Acquisition, Data Processing, Remote Sensing and GIS Applications, Aerial Survey and Digital Mapping, and capacity building facilities at the Indian Institute of Remote Sensing, Dehradun and Training and Education facility under RS & GIS Applications Area at Hyderabad. The satellite data acquisition facility (ground station) is located at Shadnagar about 60 km south of Hyderabad. The NRSC Data Centre (NDC) is responsible for dissemination of satellite data to the users. The Aerial Survey and Digital Mapping wing is equipped with state-of-the art facilities i.e., medium format digital camera, Differential GPS, Airborne Laser Terrain Mapper (ALTM) and digital photogrammetry systems and two aircrafts (Beach craft 200) for infrastructure and utilities surveys, and for generation of DEM.

The Remote Sensing and GIS Applications Area (RS&GIS AA) plays a vital role towards achieving the national goal of food, water, energy and environmental securities. NRSC undertakes the operational projects on applications of space technology for natural resources and disaster management at national level apart from carrying out research in frontier areas of space applications. Additionally, the RS&GIS AA strives for capacity building and promotion of space technology applications through State Remote Sensing Centres across the country. This book provides an overview of the applications of geospatial data for the benefit of resource scientists and technologists.